Surds, Indices, and Logarithms Assignment

Index form of ‘logarithm to base x of y is z’ is:

1. x^z = y
2. x^y = z
3. y^z = x
4. z^y = x

In logarithmic form of ‘2&sup6; = 64’:

1. base = 6, log = 2, number = 64
2. base = 2, log = 6, number = 64
3. base = 2, log = 64, number = 6
4. base = 64, log = 2, number = 6

The value of 32–√23–√32–√+23–√+12−−√3–√2–√32−2332+23+123−2 is,

1. 1111
2. 12−12
3. 1212
4. 11−11

Value of 5–√+3–√80−−√+48−−√45−−√27−−√5+380+48−45−27 is,

1. 2−2
2. 1−1
3. 22
4. 11

Simplify 623–√6–√+6–√3–√+2–√43–√6–√2–√623−6+63+2−436−2 is,

1. 11
2. 22
3. 00
4. 1−1

Simplify 418−−√12−−√875−−√32−−√+92–√3–√41812−87532+923.

1. 22
2. 00
3. 1−1
4. 11

Value of

11+2–√+12–√+3–√+13–√+4–√11+2+12+3+13+4

+14–√+5–√+15–√+6–√+16–√+7–√+14+5+15+6+16+7

+17–√+8–√+18–√+9–√+17+8+18+9 is,

1. 00
2. 2−2
3. 22
4. 11

If a=13+22–√a=13+22 and b=1322–√b=13−22, the value of a2b+ab2a2b+ab2 is,

1. 5−5
2. 66
3. 6−6
4. 55

If x=3–√2–√3–√+2–√x=3−23+2 and y=3–√+2–√3–√2–√y=3+23−2, the value of x3+y3x3+y3 is,

1. 807
2. 907
3. 870
4. 970

If x=5+26–√526–√−−−−−−−√x=5+265−26 find the value of x2(x10)2x2(x−10)2,

1. 1−1
2. 2−2
3. 11
4. 22

Arrange 334334251251, and 717717 in ascending order,

1. 334334 > 251251 > 717717
2. 251251 > 334334 > 717717
3. 334334 > 717717 > 251251
4. 717717 > 251251 > 334334

461+462+463+464461+462+463+464 is divisible by,

1. 33
2. 1111
3. 1313
4. 17