Surds, Indices, and Logarithms Assignment

Index form of ‘logarithm to base x of y is z’ is:

  1. x^z = y
  2. x^y = z
  3. y^z = x
  4. z^y = x

 In logarithmic form of ‘2&sup6; = 64’:

  1. base = 6, log = 2, number = 64
  2. base = 2, log = 6, number = 64
  3. base = 2, log = 64, number = 6
  4. base = 64, log = 2, number = 6

The value of 32–√23–√32–√+23–√+12−−√3–√2–√32−2332+23+123−2 is,

  1. 1111
  2. 12−12
  3. 1212
  4. 11−11

Value of 5–√+3–√80−−√+48−−√45−−√27−−√5+380+48−45−27 is,

  1. 2−2
  2. 1−1
  3. 22
  4. 11

Simplify 623–√6–√+6–√3–√+2–√43–√6–√2–√623−6+63+2−436−2 is,

  1. 11
  2. 22
  3. 00
  4. 1−1

Simplify 418−−√12−−√875−−√32−−√+92–√3–√41812−87532+923.

  1. 22
  2. 00
  3. 1−1
  4. 11

Value of

11+2–√+12–√+3–√+13–√+4–√11+2+12+3+13+4

+14–√+5–√+15–√+6–√+16–√+7–√+14+5+15+6+16+7

+17–√+8–√+18–√+9–√+17+8+18+9 is,

  1. 00
  2. 2−2
  3. 22
  4. 11

If a=13+22–√a=13+22 and b=1322–√b=13−22, the value of a2b+ab2a2b+ab2 is,

  1. 5−5
  2. 66
  3. 6−6
  4. 55

If x=3–√2–√3–√+2–√x=3−23+2 and y=3–√+2–√3–√2–√y=3+23−2, the value of x3+y3x3+y3 is,

  1. 807
  2. 907
  3. 870
  4. 970

If x=5+26–√526–√−−−−−−−√x=5+265−26 find the value of x2(x10)2x2(x−10)2,

  1. 1−1
  2. 2−2
  3. 11
  4. 22

Arrange 334334251251, and 717717 in ascending order,

  1. 334334 > 251251 > 717717
  2. 251251 > 334334 > 717717
  3. 334334 > 717717 > 251251
  4. 717717 > 251251 > 334334

461+462+463+464461+462+463+464 is divisible by,

  1. 33
  2. 1111
  3. 1313
  4. 17

Leave a comment

Your email address will not be published.

Drop files here

or

Please do not close the window until process is completed